
Conscription and Military Service: Do They Result in Future Violent and Non-Violent 

Incarcerations and Recidivism?i 

Xintong Wang                Alfonso Flores-Lagunes 

 
 
 

O N L I N E   A P P E N D I X 
 
 
This online appendix is divided in the following sections. 
 
 
Appendix A: Propositions of the nonparametric bounds explained in Section 3 of the paper, and 

their proofs. 
 
Appendix B: Estimation and inference details. 
 
Appendix C: Subpopulation Strata Proportion from Wang, Flores, and Flores-Lagunes (2020). 
 
Appendix D: Results for all subsamples. 
 
Appendix E: Estimation biases in the pre-draft outcomes analysis. 
 
Appendix F: Incarceration rate construction and comparison to Lindo and Stoecker (2014). 
 
Appendix G. Estimation results using alternative crime measures. 
 
 
 
 
 
 

 
i Xintong Wang is assistant professor at the Department of Accounting, Economics, and Finance, Slippery 

Rock University of Pennsylvania; Slippery Rock, PA, 16057; Telephone: +1 724-738-2579; Email: 

xintong.wang@sru.edu.  Alfonso Flores-Lagunes is professor at the Department of Economics and senior 

research associate at the Center for Policy Research, Syracuse University, and a research fellow at IZA 

and GLO; 426 Eggers Hall, Syracuse NY 13244-1020; Telephone: +1 315-443-9045; Email: 

afloresl@maxwell.syr.edu.  



Appendix A 

(FOR ONLINE PUBLICATION) 

This appendix section contains the propositions of the nonparametric bounds explained in 

Section 3 of the paper, and their proofs. We use all the notations that are outlined in Section 3 of 

the paper.  

A1. Proposition 1 and the bounds for 𝑳𝑵𝑨𝑻𝑬𝒏𝒕𝒁    

To formally provide the expression for the bounds on 𝐿𝑁𝐴𝑇𝐸./0  under A1 to A3, denote 

𝑦234 as the 𝜏-th quantile of Y conditional on Z=z and D=d. The following proposition, adapted from 

FF-L (2010), presents the expressions of bounds on the objects necessary to bound 𝐿𝑁𝐴𝑇𝐸./0 .  

Proposition 1. If Assumptions A1-A3 hold, then 𝐿./ ≤ 𝐿𝑁𝐴𝑇𝐸./0 ≤ 𝑈./, 𝑧 = 0, 1, where  

𝐿./ = 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 − 𝑈A,./;               𝑈./ = 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 − 𝐿A,./  

𝐿A,./ = 𝐸 𝑌 𝑍 = 0, 𝐷 = 0, 𝑌 ≤ 𝑦 BC|E
BC|C

AA 	 ;     𝑈A,./ = 𝐸 𝑌 𝑍 = 0, 𝐷 = 0, 𝑌 ≥ 𝑦
HI

BC|E
BC|C

AA 	  

Furthermore, we have 𝐿A,./ ≤ 𝐸 𝑌 0 𝑛𝑡 ≤ 𝑈A,./ ; 𝐿L/ ≤ 𝐿𝑁𝐴𝑇𝐸L/0 ≤ 𝑈L/ , 𝑧 = 0, 1 , 

𝐿H,L/ ≤ 𝐸 𝑌 1 𝑎𝑡 ≤ 𝑈H,L/; 𝐿A,N ≤ 𝐸 𝑌 0 𝑐 ≤ 𝑈A,N and 𝐿H,N ≤ 𝐸 𝑌 1 𝑐 ≤ 𝑈H,N; where  

𝐿L/ = 𝐿H,L/ − 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 ;                 𝑈L/ = 𝑈H,L/ − 𝐸 𝑌 𝑍 = 0, 𝐷 = 1  

𝐿H,L/ = 𝐸 𝑌 𝑍 = 1, 𝐷 = 1, 𝑌 ≤ 𝑦 BE|C
BE|E

HH 	 ;      𝑈H,L/ = 𝐸 𝑌 𝑍 = 1, 𝐷 = 1, 𝑌 ≥ 𝑦
HI

BE|C
BE|E

HH 	  

𝐿A,N = 𝐸 𝑌 𝑍 = 0, 𝐷 = 0, 𝑌 ≤ 𝑦
HI

BC|E
BC|C

AA 	 ;     	𝑈A,N = 𝐸 𝑌 𝑍 = 0, 𝐷 = 0, 𝑌 ≥ 𝑦 BC|E
BC|C

AA 	  

𝐿H,N = 𝐸 𝑌 𝑍 = 1, 𝐷 = 1, 𝑌 ≤ 𝑦
HI

BE|C
BE|E

HH 	 ;      𝑈H,N = 𝐸 𝑌 𝑍 = 1, 𝐷 = 1, 𝑌 ≥ 𝑦 BE|C
BE|E

HH 	 . 

Proposition 1 also presents the bounds for 𝐿𝑁𝐴𝑇𝐸L/0 , the direct effect of the draft lotteries 

on the crime outcomes of the volunteers (always-takers), and potential crime outcomes for the 

other strata 𝐸 𝑌 1 𝑎𝑡 , 𝐸 𝑌 0 𝑐 , and 𝐸 𝑌 1 𝑐 . These outcomes are necessary for us to 

construct the bounds for the military service effect of volunteer veterans (always-takers) and total 

veterans - LATEat
Z and ATT.   



Proposition 1 follows the intuition provided in Section 3.3 of the paper. The relevant point 

identified objects under Assumption A1-A3 in Section 3.3 are as follows: 𝜋./ = 𝑝A|H, 𝜋L/ = 𝑝H|A, 

𝜋N = 𝑝H|H − 𝑝H|A = 𝑝A|A − 𝑝A|H , 𝐸[𝑌(1)] = 𝐸 𝑌 𝑍 = 1 , 𝐸[𝑌(0)] = 𝐸 𝑌 𝑍 = 0 , 𝐸[𝑌(1)|𝑛𝑡] =

𝐸 𝑌 𝑍 = 1, 𝐷 = 0 , 𝐸[𝑌(0)|𝑎𝑡] = 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 .  The derivation of the trimming bounds 

for 𝐸 𝑌 1 𝑎𝑡 , 𝐸 𝑌 0 𝑐  and 𝐸 𝑌 1 𝑐  follow similar steps as in Section 3.3 with respect to the 

bounds for 𝐸[𝑌(0)|𝑛𝑡]. Specifically, the derivation of the trimming bounds for 𝐸 𝑌 1 𝑎𝑡  and 

𝐸 𝑌 1 𝑐  use the equality 𝐸 𝑌 𝑍 = 1, 𝐷 = 1 = WXY
WXYZW[

⋅ 𝐸 𝑌 1 𝑎𝑡 + W[
WXYZW[

⋅ 𝐸 𝑌 1 𝑐  and 

similar steps as in Section 3.3; the derivation of the trimming bounds for 𝐸 𝑌 0 𝑐  uses the 

equality 𝐸 𝑌 𝑍 = 0, 𝐷 = 0 = W^Y
W^YZW[

⋅ 𝐸 𝑌 0 𝑛𝑡 + W[
W^YZW[

⋅ 𝐸 𝑌 0 𝑐  and similar steps as in 

Section 3.3. 

A2. Proposition 2 and the bounds for 𝑳𝑨𝑻𝑬𝒄, 𝑳𝑨𝑻𝑬𝒂𝒕, ATT  

   Under the same basic assumptions A1-A3 and the exclusion restriction, the traditional 

IV estimator of the effects of military service using the lottery draft as an IV identify the effect of 

military service on the outcome for the c stratum (𝐿𝐴𝑇𝐸N):  

𝐿𝐴𝑇𝐸N ≡ 𝐸[𝑌 𝑧, 1 − 𝑌 𝑧, 0 |𝐷H − 𝐷A = 1].          (A1.1) 

FF-L (2013) show that 𝑀𝐴𝑇𝐸3 = 𝐸 𝑌(𝑧, 𝐷H) − 𝑌 𝑧, 𝐷A , for 𝑧 = 0, 1,    can be related to 

LATE. To see this, write 𝑀𝐴𝑇𝐸0 as follows:  

𝑀𝐴𝑇𝐸0 = 𝐸 𝑌 𝑧, 𝐷H − 𝑌 𝑧, 𝐷A                                                     (A1.2)    

              = 𝐸 DH − DA ⋅ Y z, 1 − Y z, 0  

              = Pr 𝐷H − 𝐷A = 1 ⋅ {Pr 𝑍 = 1 ⋅ 𝐸 𝑌 1,1 − 𝑌 1,0 |𝐷H − 𝐷A = 1  

																			+ Pr 𝑍 = 0 ⋅ 𝐸 𝑌 0,1 − 𝑌 0,0 |𝐷H − 𝐷A = 1 } − Pr 𝐷H − 𝐷A = −1 ⋅ Pr 𝑍 = 1 ⋅

𝐸 𝑌 1,1 − 𝑌 1,0 |𝐷H − 𝐷A = −1 + Pr 𝑍 = 0 ⋅ 𝐸 𝑌 0,1 − 𝑌 0,0 |𝐷H − 𝐷A = −1 ,	                                                                                                 

for 𝑧 = 0, 1.    

In the second line of (A1.2), MATEZ is written as the expected value of the product of the 

effect of the draft-eligibility on veteran status times the effect from a change in the veteran status 

on the crime outcome. The subsequent lines use iterated expectations to make explicit the 

dependence on the instrument exposure. Recalling that A3 rules out defiers, such that 

Pr 𝐷H − 𝐷A = −1 = 0, equation (A1.2) can be related to a LATE that depends on the exposure 

status to the instrument, which we denote as 𝐿𝐴𝑇𝐸N0 (FF-L, 2013):   

𝐿𝐴𝑇𝐸N0 ≡ 𝐸 𝑌 𝑧, 1 − 𝑌 𝑧, 0 𝐷H − 𝐷A = 1  



			= 𝐸 𝑌 𝑧, 1 − 𝑌 𝑧, 0 𝑐 = jklmn

m oEIoC
,  for 𝑧 = 0,1           (A1.3)  

 

Since the denominator in the last expression is point identified (it is the reduced form effect 

of the randomized draft-eligibility on military service), the bounds on MATEZ in FF-L (2010) can 

be employed to construct bounds on each of the LATEc
Z for z=0,1. Following FF-L (2010), we use 

the point identified quantities and trimming bounds above as building blocks to construct bounds 

on MATEZ under 𝑧 = 1 and 𝑧 = 0 by writing it in different ways as a function of the local effects 

and average potential and counterfactual outcomes of the three strata. Similar in spirit of FF-L 

(2010), below we write MATEZ both under and not under exposure to the IV as  

𝑀𝐴𝑇𝐸H = 𝜋N𝐿𝑀𝐴𝑇𝐸NH                                                                                                           (A1.4) 

																= 𝜋./𝐸 𝑌 0 𝑛𝑡 + 𝜋L/𝐸 𝑌 0 𝑎𝑡 + 𝜋N𝐸 𝑌 1 𝑐 − 𝜋N𝐿𝑁𝐴𝑇𝐸NA − 𝐸[𝑌(0)]     (A1.5) 

																= 𝐸 𝑌 1 − 𝜋L/𝐸 𝑌 1 𝑎𝑡 − 𝜋./𝐸 𝑌 1 𝑛𝑡 − 𝜋N𝐸[𝑌(1, 𝐷A)|𝑐]                       (A1.6) 

																= 𝐸 𝑌 1 − 𝐸 𝑌 0 − 𝜋L/𝐿𝑁𝐴𝑇𝐸L/0 − 𝜋./𝐿𝑁𝐴𝑇𝐸./0 − 𝜋N𝐿𝑁𝐴𝑇𝐸NA                   (A1.7) 

𝑀𝐴𝑇𝐸A = 𝜋N𝐿𝑀𝐴𝑇𝐸NA                                                                                                            (A1.8) 

																= 𝐸 𝑌 1 − 𝜋./𝐸 𝑌 1 𝑛𝑡 − 𝜋L/𝐸 𝑌 1 𝑎𝑡 − 𝜋N𝐸 𝑌 0 𝑐 − 𝜋N𝐿𝑁𝐴𝑇𝐸NH       (A1.9) 

																= 𝜋L/𝐸 𝑌 0 𝑎𝑡 + 𝜋./𝐸 𝑌 0 𝑛𝑡 + 𝜋N𝐸 𝑌 0, 𝐷H 𝑐 − 𝐸 𝑌 0                         (A1.10) 

																= 𝐸 𝑌 1 − 𝐸 𝑌 0 − 𝜋L/𝐿𝑁𝐴𝑇𝐸L/0 − 𝜋./𝐿𝑁𝐴𝑇𝐸./0 − 𝜋N𝐿𝑁𝐴𝑇𝐸NH                   (A1.11) 

And 𝑀𝐴𝑇𝐸0 = Pr 𝑍 = 1 ⋅ 𝑀𝐴𝑇𝐸H + Pr 𝑍 = 0 ⋅ 𝑀𝐴𝑇𝐸A                                                             (A1.12). 

Under Assumption A1-A5, we partially identify MATEZ by plugging in the respective point 

estimates or bounds estimates of the components in (A1.4)-(A1.12). We then use the estimated 

bounds for MATEZ and equation A1.3 to derive the bounds for 𝐿𝐴𝑇𝐸N0. To make 𝐿𝐴𝑇𝐸N0	estimated 

by bounds comparable to the traditional IV estimator that identifies (1), we average out 𝑍 to obtain 

estimated bounds on 𝐿𝐴𝑇𝐸N.  

To derive the lower and upper bounds for 𝐿𝐴𝑇𝐸L/ , we write 𝐿𝐴𝑇𝐸L/  as 𝐿𝐴𝑇𝐸L/ =

Pr 𝑍 = 1 ⋅ (𝐸 𝑌 1, 1 |𝑎𝑡] − 𝐸[𝑌 1, 0 𝑎𝑡 ) + Pr 𝑍 = 0 ⋅ (𝐸 𝑌 0, 1 |𝑎𝑡] − 𝐸[𝑌 0, 0 𝑎𝑡 ) , 

then plug in the appropriate bounds derived into the terms that are not point identified or 

unobserved (i.e., 𝐸[𝑌(1,1)|𝑎𝑡], 𝐸[𝑌(1,0)|𝑎𝑡], and 𝐸[𝑌(0,0)|𝑎𝑡]).   

To derive the lower and upper bounds for ATT, we follow Chen et al. (2018) and write ATT 

as  



𝐸[𝑌 𝑧, 1 − 𝑌 𝑧, 0 |𝐷 = 1] = pq 0rH,orH
pq orH

𝐸[𝑌 1,1 − 𝑌 1,0 |𝑍 = 1, 𝐷 = 1] +

pq 0rA,orH
pq orH

𝐸[𝑌 0,1 − 𝑌 0,0 |𝑍 = 0, 𝐷 = 1].                                                     (A1.13) 

Equation A1.13 can be written as 𝐴𝑇𝑇 = sE
tE
Γ 1 + sC

tE
Γ(0), where Pr 𝑍 = 𝑧 = 𝑤3 and 

Pr 𝐷 = 1 = 𝑟H , Γ 1 = 𝑝H|H𝑌HH − 𝜋L/𝐸 𝑌 1,0 𝑎𝑡 − 𝜋N𝐸[𝑌(1, 𝐷A)|𝑐]  and Γ 0 =

𝑝H|A(𝐸[𝑌|𝑍 = 0, 𝐷 = 1] − 𝐸[𝑌(0,0)|𝑎𝑡]) . We follow Chen et al. (2019) and write Γ 1  as a 

function of local casual mechanism and direct effects that can be either point identified or partially 

identified:  

Γ 1 = 𝜋L/ 𝐸 𝑌 1 𝑎𝑡 − 𝐸 𝑌 1,0 𝑎𝑡 + 𝜋N𝐿𝑀𝐴𝑇𝐸NH                          (A1.14) 

										= 𝜋L/ 𝐸 𝑌 0 𝑎𝑡 − 𝐸 𝑌 1,0 𝑎𝑡 + 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 −

𝜋./𝐿𝑁𝐴𝑇𝐸./A − 𝜋N𝐿𝑁𝐴𝑇𝐸NA                                                                                    (A1.15)  

										= 𝑝H|H𝑌HH − 𝜋L/𝐸 𝑌 1,0 𝑎𝑡 − 𝜋N𝐸[𝑌(1, 𝐷A)|𝑐]                            (A1.16) 

We estimate the bounds for ATT by plugging in the appropriate bounds derived into the 

terms that are not point identified or unobserved (i.e., 𝐸[𝑌(1, 𝐷A)|𝑐] and 𝐸[𝑌(1,0)|𝑎𝑡]).   

The following proposition formally presents the bounds on 𝐿𝐴𝑇𝐸N , 𝐿𝐴𝑇𝐸L/ , and ATT 

under Assumptions A1-A5.   

Proposition 2. If Assumptions A1-A5 hold, 𝐿j ≤ 𝑀𝐴𝑇𝐸0 ≤ 𝑈j and  
xy

m 𝑌 𝑍 = 1 Im 𝑌 𝑍 = 0 ≤ 𝐿𝐴𝑇𝐸N0 ≤
zy

m 𝑌 𝑍 = 1 Im 𝑌 𝑍 = 0  , 𝐿L/ ≤ 𝐿𝐴𝑇𝐸L/0 	≤ 𝑈L/ , 

𝐿kll ≤ 𝐴𝑇𝑇 ≤ 𝑈kll, where 

𝐿j = Pr 𝑍 = 1 ⋅ Δ|H + Pr 𝑍 = 0 ⋅ max{ΔHA, Δ|A} 

𝑈j = Pr 𝑍 = 1 ⋅ ΥHH + Pr 𝑍 = 0 ⋅ ΥHA 

Δ|H = 𝐸 𝑌 𝑍 = 1 − 𝑝H|A ⋅ min 𝑈H,L/, 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 − 𝑝A|H ⋅ 𝐸[𝑌|𝑍 = 1, 𝐷 = 0] 

           −(𝑝H|H − 𝑝H|A)⋅min{UH,��, E[Y|Z = 1, D = 0]} 

ΔHA = (𝑝H|H − 𝑝H|A) ⋅ (𝑦� − min{𝐸[𝑌|𝑍 = 0, 𝐷 = 0], 𝐸[𝑌|𝑍 = 0, 𝐷 = 1]}) 

Δ|A = 𝑝H|A ⋅ 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 + 𝑝A|H ⋅ max 𝐸 𝑌 𝑍 = 0, 𝐷 = 0 , 𝐸 𝑌 𝑍 = 0, 𝐷 = 1  

											+(𝑝H|H − 𝑝H|A) ⋅ 𝑦� − 𝐸[𝑌|𝑍 = 0] 

ΥHH = (𝑝H|H − 𝑝H|A) ⋅ (𝐸 𝑌 𝑍 = 1, 𝐷 = 1 − 𝑦�) 

ΥHA = (𝑝H|H − 𝑝H|A) ⋅ (𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝐿A,N) 



𝐿L/ = Pr 𝑍 = 1 ⋅ 𝐸 𝑌 𝑍 = 1, 𝐷 = 1 − 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 + Pr 𝑍 = 0

⋅ 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝑈A,./  

𝑈L/ = Pr 𝑍 = 1 ⋅ min{𝐸 𝑌 𝑍 = 1, 𝐷 = 0 , 𝑈H,L/} − 𝑦� + Pr 𝑍 = 0 ⋅ 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 −

𝐿A,N   

𝐿kll =
sE
tE
⋅ 𝑝H|H ⋅ 𝐸 𝑌 𝑍 = 1, 𝐷 = 1 − 𝑝H|A ⋅ 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 − 𝑝H|H − 𝑝H|A ⋅

min 𝑈H,L/, 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 + sC
tE
⋅ 𝑝H|A ⋅ (𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝑈A,./)		

𝑈kll =
𝑤H
𝑟H
⋅

𝑝H|A ⋅ 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝑝H|A ⋅ 𝑦�

+𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝑝A|H ⋅ 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 − 𝑈A,./ 		
− 𝑝H|H − 𝑝A|H ⋅ 𝑦� − min 𝐸 𝑌 𝑍 = 0, 𝐷 = 0 , 𝐸 𝑌 𝑍 = 0, 𝐷 = 1

	

																						+ sC
tE
⋅ 𝑝H|A ⋅ 𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝐿A,N 		

and 𝑈H,L/, 𝑈A,./, and 𝐿A,N are defined as in Proposition 1. 

Proof of Proposition 2. We start by deriving bounds for the non-point identified mean 

potential (and counterfactual) outcomes of the three strata (at, c, nt) and for all the local net and 

mechanism average treatment effects. To simply notations, we denote 𝐸[𝑌|𝑍 = 𝑧, 𝐷 = 𝑑]  as 𝑌34, 

where 𝑧 = 0,1 and 𝑑 = 0,1.  

Bounds for 𝐸 𝑌 0 𝑛𝑡 :  Assumption A5(c), A5(d) and 𝜋./ ⋅ 𝐸 𝑌 0 𝑛𝑡 + 𝜋N ⋅

𝐸 𝑌 0 𝑐 = 𝑝A|A	𝑌AA  imply that 𝐸 𝑌 0 𝑛𝑡 ≥ 𝑌AA  and 𝐸 𝑌 0 𝑛𝑡 ≥ 𝑌AH . Since 𝑌AA  can be 

bigger than, smaller than or equal to 𝑌AH thus the lower bound for 𝐸[𝑌(0)|𝑛𝑡] is max{𝑌AA, 𝑌AH}. 

A5 does not provide any additional information on the upper bound for 𝐸[𝑌(0)|𝑛𝑡]. Therefore, 

the lower bound and the upper bound under Assumption A1-A5 for 𝐸 𝑌 0 𝑛𝑡  is 

max{𝑌AA, 𝑌AH} ≤ 𝐸[𝑌(0)|𝑛𝑡] ≤ 𝑈A,./.  

Bounds for 𝐸 𝑌 1 𝑎𝑡 :  Assumption A5(c) and the equation 𝜋L/ ⋅ 𝐸 𝑌 1 𝑎𝑡 + 𝜋N ⋅

𝐸 𝑌 1 𝑐 = 𝑝H|H	𝑌HH  implies that the lower bound for 𝐸 𝑌 1 𝑎𝑡  is 𝑌HH ; Assumption A5(d) 

implies that the 𝐸 𝑌 1 𝑎𝑡 ≤ 𝐸 𝑌 1 𝑛𝑡 = 𝑌HA. Since 𝑌HA can be bigger than, smaller than or 

equal to 𝑈H,L/, the upper for 𝐸 𝑌 1 𝑎𝑡  is min{𝑌HA, 𝑈H,L/}. Therefore, the lower bound and the 

upper bound under Assumption A1-A5 for 𝐸 𝑌 1 𝑎𝑡  is  𝑌HH ≤ 𝐸 𝑌 1 𝑎𝑡 ≤ min 𝑌HA, 𝑈H,L/ . 

Bounds for 𝐸 𝑌 0 𝑐 : Assumption A5 does not provide any additional information on the 

lower bound for 𝐸 𝑌 0 𝑐 . Assumption A5(c) and A5(d) and the equation 𝜋./ ⋅ 𝐸 𝑌 0 𝑛𝑡 +



𝜋N ⋅ 𝐸 𝑌 0 𝑐 = 𝑝A|A	𝑌AA  imply that 	𝐸 𝑌 0 𝑐 ≤ 	𝑌AA  and 𝐸 𝑌 0 𝑐 ≤ 𝐸 𝑌 0 𝑎𝑡 = 𝑌AH . 

Since 𝑌AA  can be bigger than, smaller than or equal to 𝑌AH , the upper bound for 𝐸 𝑌 0 𝑐  is 

min{𝑌AA, 𝑌AH}. To summarize, the lower and upper bounds for 𝐸 𝑌 0 𝑐  is 𝐿A,N ≤ 𝐸 𝑌 0 𝑐 ≤

min{𝑌AA, 𝑌AH}.  

Bounds for 𝐸 𝑌 1 𝑐 : Assumption A5 does not provide any additional information on the 

lower bound for 𝐸 𝑌 1 𝑐 . Assumption A5(c), A5(d) and the equation 𝜋./ ⋅ 𝐸 𝑌 1 𝑎𝑡 + 𝜋N ⋅

𝐸 𝑌 1 𝑐 = 𝑝A|A	𝑌HH  imply that 𝐸 𝑌 1 𝑐 ≤ 𝑌HH  and 𝐸 𝑌 1 𝑐 ≤ 𝑌HA . And since 𝑌HH ≤ 𝑌HA 

by Assumption A5(c) and A5(d), the upper bound for 𝐸 𝑌 1 𝑐  is 𝑌HH. To summarize, the lower 

and upper bounds for 𝐸 𝑌 1 𝑐  is 𝐿H,N ≤ 𝐸[𝑌(1)|𝑐] ≤ 𝑌HH.  

Bounds for 𝐸 𝑌 1, 𝐷A 𝑐 : Assumption A4 implies that 𝐸 𝑌 1, 𝐷A 𝑐 ≥ 𝑦�. Assumption 

A5 does not provide additional information to the lower bound for 𝐸 𝑌 1, 𝐷A 𝑐 ; Assumption 

A5(a) and A5(d) imply that 𝐸 𝑌 1, 𝐷A 𝑐 ≤ 𝐸 𝑌 1 𝑎𝑡 ≤ 𝐸 𝑌 1 𝑛𝑡 , and therefore 

𝐸 𝑌 1, 𝐷A 𝑐 ≤ 𝑈H,L/, 𝑎𝑛𝑑	𝐸 𝑌 1, 𝐷A 𝑐 ≤ 𝑌HA. Since 𝑈H,L/ can be larger than, smaller than or 

equal to 𝑌HA, the upper bound for 𝐸 𝑌 1, 𝐷A 𝑐  is min	{𝑈H,L/, 𝑌HA}. To summarize, the lower and 

upper bounds for 𝐸 𝑌 1, 𝐷A 𝑐  under Assumption A1-A5 is 𝑦� ≤ 𝐸 𝑌 1, 𝐷A 𝑐 ≤

min	{𝑈H,L/, 𝑌HA}.  

Bounds for 𝐸 𝑌 0, 𝐷H 𝑐 : Assumption A4 implies that 𝐸 𝑌 0, 𝐷H 𝑐 ≥ 𝑦�. Assumption 

A5 does not provide additional information to the lower bound for 𝐸 𝑌 0, 𝐷H 𝑐 ; Assumption 

A5(b) and A5(d) imply that 𝐸 𝑌 0, 𝐷H 𝑐 ≤ 𝐸 𝑌 0 𝑎𝑡 ≤ 𝐸 𝑌 0 𝑛𝑡 . Since 𝑌AH ≤ 𝑈A,./, the 

upper bund for 𝐸 𝑌 0, 𝐷H 𝑐  is 𝑌AH. To summarize, the lower and upper bounds for 𝐸 𝑌 0, 𝐷H 𝑐  

is 𝑦� ≤ 𝐸 𝑌 0, 𝐷H 𝑐 ≤ 𝑌AH.  

Bounds for 𝐿𝑁𝐴𝑇𝐸./0 , for 𝑧 = 0, 1 : 𝐸[𝑌(1)|𝑛𝑡]  is point identified as 𝑌HA . Under the 

Assumptions A1-A5, the lower and upper bounds for 𝐸 𝑌 0 𝑛𝑡  are max{𝑌AA, 𝑌AH} ≤

𝐸[𝑌(0)|𝑛𝑡] ≤ 𝑈A,./. By plugging in appropriate components, under Assumptions A1-A5, 𝑌HA −

𝑈A,./ ≤ 𝐿𝑁𝐴𝑇𝐸./0 ≤ 𝑌HA − max{𝑌AA, 𝑌AH}.  

Bounds for 𝐿𝑁𝐴𝑇𝐸L/0 , for 𝑧 = 0, 1:  𝐸[𝑌(0)|𝑎𝑡] is point identified as 𝑌AH. By plugging in 

corresponding components, under Assumption A1-A5, 𝑌HH − 𝑌AH ≤ 𝐿𝑁𝐴𝑇𝐸L/0 ≤

min 𝑌HA, 𝑈H,L/ − 𝑌AH.  



Bounds for 𝐿𝑁𝐴𝑇𝐸NA: By plugging in appropriate components, under Assumptions A1-

A5, 𝑦� − min 𝑌AA, 𝑌AH ≤ 𝐿𝑁𝐴𝑇𝐸NA ≤ min 𝑌HA, 𝑈H,L/ − 𝐿A,N.  

Bounds for 𝐿𝑁𝐴𝑇𝐸NH: By plugging in appropriate components, under Assumptions A1-

A5, 𝐿H,N − 𝑌AH ≤ 𝐿𝑁𝐴𝑇𝐸NH ≤ 𝑌HH − 𝑦�.  

Bounds for 𝐿𝑀𝐴𝑇𝐸NA: By plugging in appropriate components, under Assumptions A1-

A5, 𝑦� − min 𝑌AA, 𝑌AH ≤ 𝐿𝑀𝐴𝑇𝐸NA ≤ 𝑌AH − 𝐿A,N.  

Bounds for 𝐿𝑀𝐴𝑇𝐸NH: By plugging in appropriate components, under Assumptions A1-

A5, 𝐿H,N − min 𝑌HA, 𝑈H,L/ ≤ 𝐿𝑀𝐴𝑇𝐸NH ≤ 𝑌HH − 𝑦�.  

Bounds for 𝐸[𝑌(1,0)|𝑎𝑡]: Assumption A4 implies that 𝐸[𝑌(1,0)|𝑎𝑡] ≥ 𝑦� . Assumption 

A5 does not contribute additional information to the lower bound of 𝐸[𝑌(1,0)|𝑎𝑡]. Assumption 

A5(f) implies that 𝐸[𝑌(1,0)|𝑎𝑡] ≤ 𝐸[𝑌(1)|𝑛𝑡] and therefore 𝐸[𝑌(1,0)|𝑎𝑡] ≤ 𝑌HA. To summarize, 

the lower and upper bounds for 𝐸[𝑌(1,0)|𝑎𝑡] is 𝑦� ≤ 𝐸[𝑌(1,0)|𝑎𝑡] ≤ 𝑌HA. And by plugging in 

appropriate components, 𝑌HH − 𝑌HA ≤ 𝐸 𝑌 1 𝑎𝑡 − 𝐸 𝑌 1,0 𝑎𝑡 ≤ min	{𝑌HA, 𝑈H,L/} − 𝑦�.  

Bounds for 𝐸[𝑌(0,0)|𝑎𝑡]: Assumption A4 implies that 𝐸[𝑌(0,0)|𝑎𝑡] ≥ 𝑦� . Assumption 

A5(e) and A5(f) imply that 𝐸[𝑌(0)|𝑐] ≤ 𝐸[𝑌(0,0)|𝑎𝑡] ≤ 	𝐸[𝑌(0)|𝑛𝑡]  and therefore 𝐿A,N ≤

𝐸[𝑌(0,0)|𝑎𝑡] ≤ 	𝑈A,./  (as 𝐿A,N ≥ 𝑦� ). And 𝑌AH − 𝑈A,./ ≤ 𝐸 𝑌 0 𝑎𝑡 − 𝐸 𝑌 0,0 𝑎𝑡 ≤ 𝑌AH −

𝐿A,N.  

We now derive the bounds for MATE. We first use Equations A1.4-A1.7 to derive potential 

lower bounds for MATE1 by plugging in the appropriate bounds derived above into the terms that 

are not point identified. The corresponding four lower bounds candidates are,  

ΔHH = 𝜋N ⋅ (𝐿H,N − min{𝑈H,L/, 𝑌HA}) 

Δ�H = 𝜋./ ⋅ max 𝑌AA, 𝑌AH + 𝜋L/ ⋅ 𝑌AH + 𝜋N ⋅ 𝐿H,N − 𝜋N ⋅ min 𝑈H,L/, 𝑌HA − 𝐿A,N − 𝐸[𝑌|𝑍 = 0] 

Δ|H = 𝐸 𝑌 𝑍 = 1 − 𝜋L/ ⋅ min 𝑈H,L/, 𝑌HA − 𝜋./ ⋅ 𝑌HA − 𝜋N ⋅ min{𝑈H,L/, 𝑌HA} 

Δ�H = 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝜋L/ ⋅ min 𝑈H,L/	, 𝑌HA + 𝜋L/ ⋅ 𝑌AH − 𝜋./
⋅ 𝑌HA − max 𝑌AA, 𝑌AH − 𝜋N ⋅ [min 𝑌HA, 𝑈H,L/ − 𝐿A,N] 



After some algebra, we have ΔHH − Δ�H = 𝜋./ ⋅ 𝑈A,./ − 𝜋./ ⋅ max	{𝑌AA, 𝑌AH} ≥ 0  and therefore 

ΔHH ≥ Δ�H ; ΔHH − Δ|H = 𝜋N ⋅ min 𝑈H,L/, 𝑌HA − 𝜋N ⋅ 𝑈H,L/ ≤ 0  and therefore Δ|H ≥ ΔHH ; ΔHH − Δ�H =

𝜋L/ ⋅ min 𝑈H,L/, 𝑌HA − 𝜋L/ ⋅ 𝑌HH + 𝜋./ ⋅ 𝑌AA − 𝜋./ ⋅ max 𝑌AA, 𝑌AH + 𝜋N ⋅ 𝑌AA − 𝜋N ⋅ 𝐿A,N ≥ 0 

as 𝜋L/ ⋅ min 𝑈H,L/, 𝑌HA − 𝜋L/ ⋅ 𝑌HH ≥ 0 , 𝜋./ ⋅ 𝑌AA − 𝜋./ ⋅ max 𝑌AA, 𝑌AH ≥ 0 , and 𝜋N ⋅ 𝑌AA −

𝜋N ⋅ 𝐿A,N ≥ 0, and therefore ΔHH ≥ Δ�H . To summarize, the lower bound for MATE1 is Δ|H .  

Second, for the upper bounds for MATE1, using Equations A1.4-A1.7 we write down the four 

candidate upper bounds as follows.   

ΥHH = 𝜋N ⋅ (𝑌HH − 𝑦�) 

Υ�H = 𝜋./ ⋅ 𝑈A,./ + 𝜋L/ ⋅ 𝑌AH + 𝜋N ⋅ 𝑌HH − 𝜋N ⋅ 0 − min	{𝑌AA, 𝑌AH} − 𝐸[𝑌|𝑍 = 0] 

Υ|H = 𝐸 𝑌 𝑍 = 1 − 𝜋L/ ⋅ 𝑌HH − 𝜋./ ⋅ 𝑌HA − 𝑦� 

Υ�H = 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝜋L/ ⋅ [𝑌HH − 𝑌AH] − 𝜋./ ⋅ 𝑌HA − UA,�� − 𝜋N ⋅ (0 −

min	{𝑌AA, 𝑌AH})  

After some algebra, we have ΥHH − Υ�H = 𝜋N ⋅ 𝐿A,N − 𝜋N ⋅ min	{𝑌AA, 𝑌AH} ≤ 0 and therefore ΥHH ≤

Υ�H; ΥHH − Υ|H = 𝜋N ⋅ 𝑌HH − 𝐸 𝑌 𝑍 = 1 + 𝜋L/ ⋅ 𝑌HH + 𝜋./ ⋅ 𝑌HA = 0 and therefore ΥHH = Υ|H; ΥHH −

Υ�H = 𝜋N ⋅ 𝐿A,N − 𝜋N ⋅ min{𝑌AA, 𝑌AH} ≤ 0 and therefore ΥHH ≤ Υ�H . Therefore the upper bound for 

MATE1 is ΥHH or Υ|H.  

We then move on to MATE0, using Equations A1.8-A1.11 and by plugging in the appropriate 

bounds derived into the terms that are not point identified, we have the following candidate for the 

lower bounds.  

ΔHA = 𝜋N ⋅ (𝑦� − min{𝑌AA, 𝑌AH}) 

Δ�A = 𝐸 𝑌 𝑍 = 1 − 𝜋./ ⋅ 𝑌HA − 𝜋L/ ⋅ min 𝑌HA, 𝑈H,L/ − 𝜋N ⋅ min	{𝑌AA, 𝑌AH} − 𝜋N ⋅ (𝑌HH − 𝑦�) 

Δ|A = 𝜋L/ ⋅ 𝑌AH + 𝜋./ ⋅ max 𝑌AA, 𝑌AH + 𝜋N ⋅ 𝑦� − 𝐸[𝑌|𝑍 = 0] 

Δ�A = 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝜋L/ ⋅ min 𝑈H,L/	, 𝑌HA − 𝑌AH − 𝜋./ ⋅ (𝑌HA −

max	{𝑌AA, 𝑌AH}) − 𝜋N ⋅ [𝑌HH −𝑦�]  

After some algebra, we have ΔHA − Δ�A = 𝜋L/ ⋅ min 𝑌HA, 𝑈H,L/ − 𝜋L/ ⋅ 𝑌HH ≥ 0 , and 

therefore 	ΔHA ≥ Δ�A ; Δ|A − Δ�A = 𝜋L/ ⋅ min 𝑌HA, 𝑈H,L/ − 𝜋L/ ⋅ 𝑌HH ≥ 0 , and therefore Δ|A ≥ Δ�A ; 



ΔHA − Δ|A = 𝜋N ⋅ 𝑌AA − 𝜋N ⋅ min 𝑌AA, 𝑌AH + 𝜋./ ⋅ 𝑌AA − 𝜋./ ⋅ max{𝑌AA, 𝑌AH} . Since 𝜋N ⋅ 𝑌AA −

𝜋N ⋅ min 𝑌AA, 𝑌AH ≥ 0 and 𝜋./ ⋅ 𝑌AA − 𝜋./ ⋅ max{𝑌AA, 𝑌AH} ≤ 0, therefore, ΔHA can be larger than, 

equal to and smaller than Δ|A . To summarize, the lower bound for MATE0 under Assumptions A1-

A5 is max{ΔHA, Δ|A}.  

Last, we derive the upper bounds candidates for MATE0 using Equations A1.8-A1.11. They are.  

ΥHA = 𝜋N ⋅ (𝑌AH − 𝐿A,N) 

Υ�A = 𝐸 𝑌 𝑍 = 1 − 𝜋./ ⋅ 𝑌HA − 𝜋L/ ⋅ 𝑌HH − 𝜋N ⋅ LA,� − 𝜋N ⋅ (𝐿H,N − 𝑌AH) 

Υ|A = 𝜋L/ ⋅ 𝑌AH + 𝜋./ ⋅ UA,�� + 𝜋N ⋅ 𝑌AH − 𝐸[𝑌|𝑍 = 0] 

Υ�A = 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝜋L/ ⋅ [𝑌HH − 𝑌AH] − 𝜋./ ⋅ 𝑌HA − UA,�� − 𝜋N ⋅ (𝐿H,N − 𝑌AH)  

After some algebra, we have ΥHA − Υ�A = 𝜋N ⋅ 𝐿H,N − 𝜋N ⋅ 𝑌HH ≤ 0, and therefore	ΥHA ≤ Υ�A; ΥHA −

Υ|A = 0, and therefore ΥHA = Υ|A; ΥHA − Υ�A = 𝜋N ⋅ 𝐿H,N − 𝜋N ⋅ 𝑌HH ≤ 0, and therefore ΥHA ≤ Υ�A. To 

summarize, the upper bound for MATE0 under Assumptions A1-A5 is ΥHA or Υ|A.   

In summary from above, the lower bound for 𝑀𝐴𝑇𝐸0 under Assumptions A1-A5 is Pr 𝑍 = 1 ⋅

Δ|H + Pr 𝑍 = 0 ⋅ max{ΔHA, Δ|A} ; the upper bound for 𝑀𝐴𝑇𝐸0  under Assumptions A1-A5 is 

Pr 𝑍 = 1 ⋅ ΥHH + Pr 𝑍 = 0 ⋅ ΥHA ( ΥHH and ΥHA can be replaced by Υ|H and Υ|A respectively).  

Following Equation 9 in the main text, the lower bound for 𝐿𝐴𝑇𝐸N0  is 
pq 0rH ⋅��EZpq 0rA ⋅��� �EC,��C

m 𝐷 𝑍 = 1 Im 𝐷 𝑍 = 0 ≤ 𝐿𝐴𝑇𝐸0 ≤ pq 0rH ⋅�EEZpq 0rA ⋅�EC

m 𝐷 𝑍 = 1 Im 𝐷 𝑍 = 0 .  

Next, we derive bounds for 𝐿𝐴𝑇𝐸L/0  in Proposition 2 by plugging in appropriate bounds and point 

estimates that we derived earlier. The bounds for 𝐿𝐴𝑇𝐸L/0  is  Pr 𝑍 = 1 ⋅ 𝑌HH − 𝑌HA +

Pr 𝑍 = 0 ⋅ 𝑌AH − 𝑈A,./ ≤ 𝐿𝐴𝑇𝐸L/0 ≤ Pr 𝑍 = 1 ⋅ min 𝑌HA, 𝑈H,L/ − 𝑦� + Pr 𝑍 = 0 ⋅

(𝑌AH − 𝐿A,N).   

Finally, we derive bounds for ATT. We start by bounding Γ 1  in 𝐴𝑇𝑇 = sE
tE
Γ 1 + sC

tE
Γ(0).  

We first use Equations A1.14-A1.16 to derive potential lower bounds for Γ 1  by plugging in the 

appropriate bounds derived above into the terms that are not point identified. The corresponding 

three lower bounds candidates for Γ 1  are,  



  

 

 

Since , we have . thus, .  

Since , we have . 

Thus .  

Therefore, the lower bound for  is 

.  

The corresponding three upper bounds candidates for  are,  

  

 

  

Since ,  , and , we can obtain that 

and thus .  

We can also obtain that , as 

. Hence .  

Therefore, the upper bound for  is  

𝑢𝑏�H = 𝑝H|A ⋅ 𝑌AH − 𝑝H|A ⋅ 𝑦� + 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝑝A|H ⋅ 𝑌HA − 𝑈A,./ − 𝑝H|H − 𝑝A|H

⋅ (𝑦� − min{𝑌AA, 𝑌AH} 



To construct bounds for , we plug in the 

lower and upper bounds for .  is bounded by 

.  

We finish deriving the bounds for ATT in  Proposition 2 by plugging in the lower and upper bounds 

for  and  in  to have  and  in Proposition 2,   

𝐿kll =
sE
tE
⋅ 𝑝H|H ⋅ 𝑌HH − 𝑝H|A ⋅ 𝑌HA − 𝑝H|H − 𝑝H|A ⋅ min 𝑈H,L/, 𝑌HA + sC

tE
⋅ 𝑝H|A ⋅ (𝑌AH − 𝑈A,./)		

𝑈kll =
𝑤H
𝑟H
⋅ 𝑝H|A ⋅ 𝑌AH − 𝑝H|A ⋅ 𝑦� + 𝐸 𝑌 𝑍 = 1 − 𝐸 𝑌 𝑍 = 0 − 𝑝A|H ⋅ 𝑌HA − 𝑈A,./

− 𝑝H|H − 𝑝A|H ⋅ (𝑦� − min{𝑌AA, 𝑌AH} 	

																						+ sC
tE
⋅ 𝑝H|A ⋅ 𝑌AH − 𝐿A,N .		
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Appendix B. Estimation and Inference  

(FOR ONLINE PUBLICATION) 

In Appendix A, we have presented the bounds for the military service of the always-takers 
and compliers,  𝐿𝐴𝑇𝐸%& and 𝐿𝐴𝑇𝐸', that contain maximum (max) and minimum (min) operators. 
The concavity and convexity of the min and max operators cause the sample analog estimates of 
this type of bounds narrower than the true bounds. Moreover, Hirano and Porter (2012) showed 
that there exist no locally asymptotically unbiased estimators and no regular estimators for 
parameters that are nonsmooth functionals of the underlying data distribution, such as those 
involving min or max operators. In this paper, we follow Flores and Flores-Lagunes (2013) and 
use the method proposed by Chernozhukov, Lee and Rosen (2013; hereafter CLR) to obtain 
confidence regions for the true parameter value and half-median unbiased estimators for these 
upper and lower bounds. (The half-median unbiasedness property means that the upper bound 
estimator exceeds the true value of the upper bound with probability at least one half 
asymptotically, while the reverse holds for the lower bound.) In this appendix, we briefly describe 
CLR’s procedure as applied to our setting.  

Let the bounds for a parameter 𝜃)  ( 𝐿𝐴𝑇𝐸%& ) be given by [ 𝜃)* , 𝜃)+ ], where 𝜃)* =
max

0∈𝒱34{6,…,93}
𝜃*(𝑣)  and 𝜃)+ = min

0∈𝒱@4{6,…,9@}
𝜃+(𝑣) . CLR refer to 𝜃*(𝑣)  and 𝜃+(𝑣)  as bounding 

functions. While 𝑣 indexes the bounding functions, 𝑚* and 𝑚+ give, respectively, the number of 
terms inside the max and min operators. In our setting, for example, the upper bound for 𝐿𝐴𝑇𝐸%& 
in Proposition 2 can be written as 𝜃+ 1 = Pr 𝑍 = 1 ⋅ 𝐸 𝑌 𝑍 = 1, 𝐷 = 0 − 𝑦* + Pr 𝑍 = 0 ⋅
𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝐿),'  and 𝜃+ 2 = Pr 𝑍 = 1 ⋅ 𝑈6,%& − 𝑦* + Pr 𝑍 = 0 ⋅
𝐸 𝑌 𝑍 = 0, 𝐷 = 1 − 𝐿),' . In the case of this paper, sample analog estimators of the bounding 

functions 𝜃*(𝑣) and 𝜃+(𝑣) are known to be consistent and asymptotically normally distributed, as 
they are simple functions of proportions, conditional means, and trimmed means (Newey and 
McFadden 1994; Lee 2009).  

CLR address the issues related to estimation and inference for the bounds [𝜃)* , 𝜃)+] by 
employing prevision-corrected estimates of the bounding functions before applying the min and 
max operators. The precision adjustment consists of adding to each estimated bounding function 
its pointwise standard error times an appropriate critical value, 𝜅(𝑝), so that estimates with higher 
standard errors receive larger adjustments. Depending on the choice of 𝜅(𝑝), it is possible to obtain 
confidence regions for either the identified set or the true parameter value, and half-median 
unbiased estimators for the lower and upper bounds.  

CLR select 𝜅(𝑝) based on a standardized Gaussian process 𝑍Q∗(𝑣). For any compact set 
𝑉 ∈ 𝒱, they approximate by simulation the p-th quantile of sup

W∈𝒱
	𝑍Q∗(𝑣), denoted by 𝜅Q,Y(𝑝), and 

use it in place of 𝜅(𝑝). Since setting 𝑉 ∈ 𝒱+ for the upper bound leads to asymptotically valid but 
conservative inference, CLR propose a preliminary set estimator 𝑉Q+  of 𝑉)+ = arg min

W∈𝒱@
𝜃+(𝑣), 

which they call an adaptive inequality selector. Intuitively, 𝑉Q+ selects those bounding functions 
that are close enough to binding to affect the asymptotic distribution of the estimator of the upper 



	
	

bound. For the same reason, a preliminary set estimator 𝑉Q* of 𝑉)* = argmax
W∈𝒱@

𝜃*(𝑣) is used for the 
lower bound.  

The precision-corrected estimator of the upper bound 𝜃)+ is given by  

𝜃+ 𝑝 = min
W∈𝒱@

[𝜃+(𝑣) + 𝜅Q,Y\@
+ 𝑝 𝑠+(𝑣)],         (A.2.1) 

where 𝜃+(𝑣) is the sample analog estimator of 𝜃+(𝑣) and 𝑠+(𝑣) is its standard error. Let 
𝛾Q = 𝜃Q+ 1 …𝜃Q+ 𝑚+ ` be the vector of bounding functions and let 𝛾Q = [𝜃Q+ 1 …𝜃Q+ 𝑚+ ]′ 
be the vector of bounding functions and let 𝛾Q be its sample analog estimator. The steps we 
follow to compute the set estimator 𝑉Q+ and the critical value 𝜅Q,Y\@

+ (𝑝) in  (A.2.1) are:  

(1) We obtain by bootstrapping a consistent estimate  ΩQ of the asymptotic variance of 
𝑛(𝛾Q − 𝛾Q). Let  𝑔Q 𝑣 ` denote the v-th row of ΩQ

6/f and let 𝑠Q+ 𝑣 =
	𝑔Q 𝑣 / 𝑛.  

(2) We simulate R draws from N(0,𝐼9@), denoted 𝑍6, … , 𝑍h, where 𝐼9@ is the 𝑚+×𝑚+ 
identity matrix, and we calculate 𝑍j∗ 𝑣 = 𝑔Q 𝑣 `𝑍j/ 	𝑔Q 𝑣  for 𝑟 = 1,… , 𝑅.  

(3) Let 𝑄n 𝑋  denote the p-th quantile of a random variable X and, following CLR, let 
𝑐Q = 1 − (.1/ log 𝑛). We compute 𝜅Q,𝒱@

+ 𝑐Q = 𝑄'\(maxW∈𝒱@
𝑍j∗ 𝑣 , 𝑟 = 1,… , 𝑅); that is, 

for each replication 𝑟 we calculate the maximum of 𝑍j∗(1), …, 𝑍j∗(𝑚+) and take the 
c-th quantile of those R values. We then use 𝜅Q,𝒱@

+ 𝑐Q  to compute  𝑉Q+ = {𝑣 ∈
𝒱+: 𝜃+(𝑣) ≤ min

v∈𝒱@
𝜃+ 𝑣 + 𝜅Q,𝒱@

+ 𝑐Q 𝑠Q+ 𝑣 + 2𝜅Q,𝒱@
+ 𝑐Q 𝑠Q+(𝑣)}.  

(4) We compute 𝜅Q,	Y\@
+ 𝑝 = 𝑄n(maxv∈Y\@

𝑍j∗ 𝑣 , 𝑟 = 1,… , 𝑅), so that the critical value is 

based on 𝑉Q+ instead of 𝒱+.  
 

Follow similar steps above, we have the precision- corrected estimator of the lower 
bound 𝜃)* .  

𝜃* 𝑝 = max
W∈𝒱@

[𝜃*(𝑣) − 𝜅Q,Y\@
* 𝑝 𝑠*(𝑣)]        (A.2.2) 

where 𝜃*(𝑣) is the sample analog estimator of 𝜃*(𝑣) and 𝑠*(𝑣). To compute 𝜅Q,Y\@
* 𝑝 , we 

follow same steps above but in step (3) we replace 𝑉Q+ by 𝑉Q* = {𝑣 ∈ 𝒱*: 𝜃* 𝑣 ≥
max
v∈𝒱3

𝜃* 𝑣 − 𝜅Q,𝒱3
* 𝑐Q 𝑠Q* 𝑣 − 2𝜅Q,𝒱3

* 𝑐Q 𝑠Q* (𝑣)}. Because of the symmetry of the normal 

distribution, no changes are needed when computing the quantities in step 3 and step 4.  
Half-median-unbiased estimators of the upper and lower bounds are obtained by setting 

𝑝 = 1/2 in the steps above and using equations A.2.1 and A.2.2 to compute, respectively, 
𝜃* 1/2  and 𝜃+ 1/2 .  

To construct confidence intervals for the parameter 𝜃), it is important to take into account 
the length of the identified set. Following CLR, let  ΓQ = 𝜃Q+(1/2) −	𝜃Q* (1/2), ΓQy =
max(0, ΓQ), 𝜌Q = max{𝜃Q+

{
|
−	𝜃Q+

6
|
, 𝜃Q+

6
|
−	𝜃Q+

{
|
}, 𝜏Q = 1/(𝜌Q log 𝑛) and  𝑝Q = 1 −



	
	

Φ 𝜏QΓQy 𝛼, where Φ ∙  is the standard normal CDF. Note that  𝑝Q ∈ [1 − 𝛼, 1 − 𝛼/2], with 𝑝Q 
approaching 1 − 𝛼 when ΓQ grows large relative to sampling error and 𝑝Q = 1 − 𝛼/2 when ΓQ =
0. An asymptotically valid 1 − 𝛼 confidence interval for 𝜃) is given by [𝜃Q* 𝑝Q , 𝜃Q+ 𝑝Q ]. 
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Appendix C. Subpopulation Strata Proportion from Wang, Flores, and Flores-Lagunes 
(2019) 

(FOR ONLINE PUBLICATION) 

The population strata proportions needed to compute the bounds (see Sections 3.3 and 4.2 

in the paper), have been borrowed from Wang, Flores and Flores-Lagunes (2019; WFF-L 

hereafter). They used a restricted version of the National Health Interview Survey (NHIS) to obtain 

these proportions. NHIS, given that it is a principal cross-sectional data source on health, is 

representative of the civilian population of the United States. The two key variables in NHIS to 

obtain these proportion estimates are the draft-eligibility and the Vietnam war veteran status.  

To obtain the Vietnam War draft lotteries eligibilities 𝑍", WFF-L used the restricted-use 

birth dates variables of each respondent. These birth dates variables are the day of birth, the month 

of birth, and the year of birth. The data was accessed through the Research Data Center of National 

Center for Health Statistics and the Federal Statistics Research Data Center at Ithaca, New York. 

The authors then used the exact birth date information in the NHIS and the lottery numbers 

obtained from the Selective Service System (SSS) website to construct the Random Sequence 

Number (RSN) from 1 to 366 of each respondent. They then define the binary draft-eligibility with 

the value of 1 (draft-eligible) for an individual who received a lottery number under the draft-

eligibility cutoff and 0 (draft-ineligible) for an individual who received a lottery number above the 

draft-eligibility cutoff.   

To construct the Vietnam War military service status variable 𝐷", WFF-L used the indicator 

measures that an individual served in the Vietnam Era in the military based on the survey questions 

“Did {Person} ever serve on active duty in the Armed Forces of the United States?” and “When 

did {Person} serve (Vietnam Era, August 1964-April 1975)”.  

In Table A C.1, we present the proportion estimates from WFF-L using the NHIS 1982-

1996 by birth cohort and race. Each column, from left to the right, is the total observation, draft 

eligible sample estimates (𝐸[𝑍"]), veteran status sample estimates (𝐸[𝐷"]), never-takers (𝜋() =

Pr	(𝐷" = 0|𝑍" = 1) ), always-takers ( 𝜋3) = Pr	(𝐷" = 1|𝑍" = 0) ), and compliers ( 𝜋4 =

(Pr 𝐷" = 1 𝑍" = 1 − Pr 𝐷" = 1 𝑍" = 0 )).  

 



	
	

Table A C.1 Mean Statistics of Draft-eligibility, Veteran Status, and Strata Proportions from the NHIS 1982-
1996 

 
 Total 

Observation 
Draft-
eligible 

Veteran  Never-
takers  

Always-
takers  

Compliers 

White and Nonwhite males born in 1948-1952 
Mean                56137                0.4458           0.2674          0.6616          0.2102          0.1283 
SE                        --                   [0.0023]        [0.0020]        [0.0032]       [0.0025]       [0.0041] 
White males born in 1948-1952   
Mean   
SE 

47018 
-- 

0.4439 
[0.0025] 

0.2789 
[0.0022] 

0.6439 
[0.0035] 

0.2172 
[0.0027] 

0.1388 
[0.0045] 

Nonwhite sample born in 1948-1952 
Mean 
SE 

9119 
-- 

0.4565 
[0.0057] 

0.2040 
[0.0046] 

0.7560 
[0.0074] 

0.1704 
[0.0058] 

0.0736 
[0.0094] 

White and Nonwhite males born in 1948-1950 
Mean                32946                0.5449           0.3310          0.6336         0.2886         0.0778 
SE                        --                   [0.0030]         [0.0028]       [0.0039]       [0.0040]       [0.0056] 
White males born in 1948-1950   
Mean   
SE 

27612 
-- 

0.5419 
[0.0032] 

0.3468 
[0.0031] 

0.6147 
[0.0042] 

0.3012 
[0.0044] 

0.0842 
[0.0061] 

Nonwhite sample born in 1948-1950 
Mean 
SE 

5334 
-- 

0.5617 
[0.0074] 

0.2434 
[0.0065] 

0.7350 
[0.0090] 

0.2157 
[0.0092] 

0.0493 
[0.0128] 

White and Nonwhite males born in 1950 
Mean 
SE 

11223 
-- 

0.5495 
[0.0051] 

0.2532 
[0.0044] 

0.6939 
[0.0064] 

0.1887 
[0.0059] 

0.1175 
[0.0087] 

White males born in 1950   
Mean   
SE 

9350 
-- 

0.5460 
[0.0055] 

0.2644 
[0.0049] 

0.6801 
[0.0070] 

0.1975 
[0.0065] 

0.1225 
[0.0096] 

Nonwhite sample born in 1950 
Mean 
SE 

1873 
-- 

0.5680 
[00126] 

0.1939 
[0.0104] 

0.7645 
[0.0150] 

0.1393 
[0.0132] 

0.0963 
[0.0200] 

White and nonwhite males born in 1951   
Mean 
SE 

11383 
-- 

0.3351 
[0.0048] 

0.1913 
[0.0040] 

0.7275 
[0.0078] 

0.1503 
[0.0044] 

0.1221 
[0.0089] 

White males born in 1951   
Mean   
SE 

9533 
-- 

0.3340 
[0.0052] 

0.1965 
[0.0044] 

0.7171 
[0.0085] 

0.1531 
[0.0048] 

0.1298 
[0.0098] 

Nonwhite sample born in 1951 
Mean 
SE 

1850 
-- 

0.3408 
[0.0122] 

0.1630 
[0.0094] 

0.7830 
[0.0184] 

0.1350 
[0.0106] 

0.0820 
[0.0212] 

White and nonwhite males born in 1952 
Mean 
SE 

11808 
-- 

0.2779 
[0.0044] 

0.1641 
[0.0037] 

0.7373 
[0.0084] 

0.1261 
[0.0038] 

0.1366 
[0.0092] 

White males born in 1952   
Mean   
SE 

9873 
-- 

0.2770 
[0.0048] 

0.1692 
[0.0040] 

0.7183 
[0.0094] 

0.1261 
[0.0041] 

0.1556 
[0.0102] 

Nonwhite sample born in 1952 
Mean 
SE 

1935 
-- 

0.2827 
[0.0113] 

0.1366 
[0.0086] 

0.8381 
[0.0168] 

0.1266 
[0.0101] 

0.0353 
[0.0196] 

 Note: Standard errors in parentheses.   
 



Appendix D Results for All Subsamples 

Table D. 1 The Direct Effect of Draft Lotteries on Draft Avoiders  

 

	

	

Note: The vertical axes in the figures are in the unit of percentage points. 

 



Table D. 2 The Effect of Military Service on Draft Compliers 

	

 

 
Note: The vertical axes in the figures are in the unit of percentage points. 



Table D. 3 The Effect of Military Service on Volunteers 

 

 

	

Note: The vertical axes in the figures are in the unit of percentage points. 

 



Table D4. The Average Military Service Treatment Effect on Veterans (the “Treated”)  

 

 

 
Note: The vertical axes in the figures are in the unit of percentage points. 

 



Table D5. The Direct Effect of Draft Lotteries of Compliers Who Did Not Serve in the Military 

 

	

	

Note: The vertical axes in the figures are in the unit of percentage points. 

	



Table D6. The Direct Effect of Draft Lotteries of Compliers Who Served in the Military 

	

	

	

Note: The vertical axes in the figures are in the unit of percentage points. 

 



	
	

Appendix E. Estimation Biases in the Pre-Draft Outcomes Analysis 

(FOR ONLINE PUBLICATION) 

Ideally, the pre-draft outcomes are computed using individual-level data representative of the U.S.  

male population, which includes both the incarcerated and non-incarcerated populations. 

Unfortunately, the individual-level data we have access to is on inmates. In this Appendix, we 

show the biases that arise in each of the two methods we employ to undertake the pre-draft 

outcomes analysis using the individual-level data on inmates. In what follows, let a pre-draft binary 

outcome be denoted by 𝑋" (for instance, “ever arrested before 18 years old”) for each individual 𝑖, 

and let 𝑘%, where 𝑗 = 1, 2, 3, correspond to the three different subpopulation strata in the paper. 

We also let 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" be an indicator variable for the incarceration status of each individual 

𝑖. Then, the mean of 𝑋" for a stratum, say, 𝑘3, can be expressed as follows (using the law of total 

probability).  

𝐸 𝑋" 𝑘3 = 1 ⋅ Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3  

+1 ⋅ Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘3  

+0 ⋅ Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 ⋅ Pr 𝑋" = 0 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3  

+0 ⋅ Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 ⋅ Pr 𝑋" = 0 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘3  

= Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3  

+Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘3          

                                                                                                                            (Equation AE.1) 

And the corresponding difference between two strata 𝑘3 and 𝑘: can be expressed as follows.  

 𝐸 𝑋" 𝑘3 − 𝐸 𝑋" 𝑘: = Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3  

+Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘3  

−Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘: ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘:  

−Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘: ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘:            (Equation AE.2) 



	
	

In lack of individual-level data, the first method to compute these pre-draft outcomes by strata 

and their differences consists of using the inmate individual-level data only; in other words, we 

use Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘%  in place of Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘% , 	𝑗 =

1,2, 3 in Equation AE.2, and in all other pair-wise comparisons between strata. The estimated 

mean difference is estimated as,  

𝐸 𝑋= 𝑘3 − 𝐸 𝑋= 𝑘: 3
= Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3  

+Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3  

−Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘: ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘:  

−Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘: ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘:  

= Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3 − Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘:          

                                                                                                                              (Equation AE.3) 

The second equation in AE.3 results from Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 +

Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 = 1 and Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘: +

Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘: = 1.  

The bias of the estimated mean difference using the first method is  

𝛼3 = 𝐸 𝑋= 𝑘3 − 𝐸 𝑋= 𝑘: − 	𝐸 𝑋" 𝑘3 − 𝐸 𝑋" 𝑘:  

= Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3
⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3 − Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘3  

−Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘:
⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘: − Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘:  

                                                                                                                              (Equation AE.4) 

Intuitively, the bias is a function of the difference in the difference of the pre-draft outcomes’ 

means between incarcerated and non-incarcerated males within each of the two strata 𝑘3 and 𝑘:.  

The second method to compute mean pre-draft outcomes for stratum 𝑘% , 𝑗 = 1,2,3,  is by 

estimating the first product term of the last equation in Equation AE.1 by first counting the number 



	
	

of inmates whose 𝑋" = 1 in strata 𝑘% and dividing this by the U.S. male population who belong to 

𝑘%. Thus, the estimated mean difference in 𝑋" between 𝑘3 and 𝑘: can be written as,   

𝐸 𝑋= 𝑘3 − 𝐸 𝑋= 𝑘: :
= Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘3

− Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1 𝑘: ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1, 𝑘:  

																												= Pr[𝑋" = 1	&	𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1|𝑘3] − Pr[𝑋" = 1	&	𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 1|𝑘:]                                                                                                                                                                                            

                                                                                                                                (Equation AE.5) 

And the potential bias under the second method is,  

𝛼: = 𝐸 𝑋= 𝑘3 − 𝐸 𝑋= 𝑘: :
− 𝐸 𝑋" 𝑘3 − 𝐸 𝑋" 𝑘:  

= Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘: ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘: −

Pr 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0 𝑘3 ⋅ Pr 𝑋" = 1 𝑖𝑛𝑐𝑎𝑟𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛" = 0, 𝑘3                                                                       

 (Equation AE.6)  

which is a function of the difference in the means of the pre-draft outcome 𝑋"  for those non-

incarcerated between strata 𝑘3 and 𝑘:. 

	



	
	

Appendix F – Incarceration Rate Construction and Comparison to Lindo and Stoecker 
(2014) 

 

To estimate the long-term effect of Vietnam War military service on the incarceration 

outcomes, this paper followed the general idea in Lindo and Stoecker (2014). In this method, the 

total inmate counts by draft eligibility and military status are estimated using the Survey of Inmates 

in State of Federal Correctional Facilities 1979, 1986, and 1991; the total population by draft 

eligibility and military service status are estimated using the Vital Statistics of the United States 

1948-1952. Then, the incarceration outcomes are constructed by dividing the inmate count 

estimates by the total population estimates for each draft-eligibility and military service status 

groups. However, this paper deviated from the data construction in the seminal paper by Lindo 

and Stoecker (2014). Most of the deviations result from newer information available to us. This 

Appendix discusses these deviations in detail.   

 

(1) Difference in offense variables in the 1979 Survey of Inmates in State and Federal 
Correctional Facilities  

 

Lindo and Stoecker (2014) used the variables “Offense V30-V33” to construct their crime 
outcomes. These variables have 2,247 observations with missing values for offense codes or 
because they are deemed observations “out of universe”. After some investigation, we realized 
that the variables in “Current Offense V930-V933” have no missing values or “out of universe” 
values. Upon contacting a BJS statistician, she explained that variables V930-V933 are the actual 
current offense variables; while variables V30-V33 are offenses inmates were initially sentenced 
for before their previous probation from the prison. Thus, the justification of this departure in 
data construction stems from the information learned upon contacting the BJS.  

 

(2) Difference in the treatment of “not ascertain” observations in the current offense 
variables in the 1979, 1986, and 1991 Surveys of Inmates in State and Federal 
Correctional Facilities  

 

Lindo and Stoecker (2014) coded inmates whose offenses were not clearly ascertained as 
inmates with nonviolent crimes. Instead, we did not use the observations of inmates whose 
offense was not clearly ascertained in the survey to estimate violent crime and non-violent crime 
outcomes. In our analytical sample for the 1948-1952-born males in the SISFCF 1979, 1986, and 
1991, there are 96 inmates with not clearly ascertained convictions out of a total of 5464 
observations (1.76%). The reason for this departure in data construction is based on information 



	
	

learned from the same BJS statistician. The person explained that these “not ascertain” offense 
values “most likely mean that the literal response recorded by the interviewer did not contain 
enough information to be coded into one of the existing offenses (e.g., murder, burglary, etc.). 
This could be because the interviewer’s response was not legible or because the response the 
inmate provided should have been probed due to lack of clarity/specificity, but it was not.” 
Based on this information, we believe it is a cleaner approach to not use those observations that 
contain “not ascertain” for the offenses to classify inmates’ crimes as violent or nonviolent.  

 

(3) Difference in offense variables in the 1991 Survey of Inmates in State and Federal 
Correctional Facilities  

 

Lindo and Stoecker (2014) used five offense variables—“offense1-offense4” and “controlling 
offense”—to determine the type of crime committed by inmates (violent or nonviolent crime). 
Instead, we used the “Current Offense 1-5” variables to determine the type of crime committed 
by inmates. The reason for this departure in data construction is based on information learned 
from the same BJS statistician. The person clarified that the “controlling offense” is the offense 
with the longest sentence and is not a new offense.  

 

(4) Failed to replicate Lindo and Stoecker’s estimated incarceration rates in the survey 
year of 1991   

 

After multiple attempts, and after reviewing the data-construction coding files kindly shared by 
Jason Lindo and Charles Stoecker, we were not able to replicate their estimates for the 
incarceration rates in the SISFCF survey year of 1991. We note that this only occurred for the 
1991 survey year, as we were able to replicate the corresponding estimates in other survey years.  

 

We looked for some external validation source that could shed some light about the incarceration 
rates for the 1991 survey year. We found the prisoner’s surveys published by the Bureau of 
Justice Statistics (BJS). Based on this source, we think that Lindo and Stoecker’s (2014) reported 
incarceration rates for 1991 may be too high. The incarceration rate reported by us is lower and, 
we argue, likely closer to the one reported by the BJS. We provide details in what follows.   

 

Table 1 below shows the total U.S. population counts for the subjected cohorts by race and draft 
eligibility (from the Vital Statistics data). These figures are the same in Lindo and Stoecker 
(2014) and in our study. Table 2 shows the 1991 estimated incarceration rates for the same 
groups, which differ between Lindo and Stoecker (2014) and our study. Table 3 shows the 
implied count of inmates by groups, and computes the total incarcerated population. 



	
	

 

Table 1. The Total 1948-1952-Born White and Nonwhite Population Estimates in Lindo and 
Stoecker (same as ours) 

White Draft Eligible 3,556,242.5 
 Draft Ineligible  4,559,703.5 
Nonwhite Draft Eligible 543,274.68 
 Draft Ineligible 698,825.32 

 

 

Table 2. The 1991 Incarceration Rates in Lindo and Stoecker and in our study 

  

  Lindo and Stoecker 

(2014) 

This paper  

White Draft Eligible 0.0112 0.0052 

 Draft Ineligible 0.0109 0.0047 

Nonwhite Draft Eligible 0.0501 0.0282 

 Draft Ineligible  0.0429 0.0258 

 

Table 3. The Estimated Total 1948-1952-Born White and Nonwhite Incarcerated Population 
Estimates in Lindo and Stoecker and in our study 

 

  Lindo and 

Stoecker 

(2014) 

This paper 

Nonwhite Draft Eligible 39,830 15,320 

 Draft Ineligible 49,701 18,030 

White Draft Eligible 27,218 18,492 

 Draft Ineligible  29,980 21,431 

Total white 

and nonwhite 

 146,729 73,273 

 

 



	
	

The implied total incarcerated population estimates can be compared to the prison Census of 
1991 published by the Bureau of Justice Statistics (Bureau of Justice Statistics, 1992), after 
making some assumptions.  

 

Based on the above source, in 1991 there were 730,795 male inmates nationwide who are 
incarcerated in state or federal correctional facilities. According to the 1991 Survey of State 
Prison Inmates (Bureau of Justice Statistics, 1993), about 23% state prisoners are between the 
ages of 35-44. Assuming that the federal inmates follow the same age ratio, we estimate that the 
total number of male inmates between the age of 35-44 is 168,083.  

 

We still need to take into account that the last number represents inmates between the ages of 35-
44 whereas those born in 1948-1952 are roughly aged 39-43 in 1991. Assuming the same 
incarceration rate over the ages of 35-44, those aged 39-43 should not make more than 50% of 
inmates. Based on the estimates in Lindo and Stoecker (2014), there are 146,729 male inmates 
born in 1948-1952 (ages roughly 39-43 in 1991), which would imply that around 87% of the 
inmates between 35-44 years old were born in 1948-1952. Based on our estimates, there are 
73,273 male inmates born in 1948-1952 (ages roughly 39-43 in 1991), which is about 44% of the 
inmates between 35-44 years old. Moreover, considering that incarceration probabilities decrease 
with age (Bureau of Justice Statistics, 1993), we would expect that the proportion of inmates 
born in 1948-1952 is somewhat below 50% relative to the inmate population in the age range of 
35-44 years old. Based on the previous calculations, we place more confidence on our estimates 
for survey year 1991.  
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Appendix G. Estimation Results using Alternative Crime Measures 

We have produced alternative sets of results using the following two alternative measures of 
crimes constructed with information in the SSICFC survey: 

(1) defining violent/nonviolent crimes based on the inmate’s original offenses, which is the 
same measure used by Lindo and Stoecker (2014) and which we refer to as “LS”, and  

(2) defining violent/nonviolent crimes based on whether the inmate ever committed a violent 
crime and which we refer to as “EVER”.  

The presentation of results follow the corresponding presentation of the results in the paper.   

 

1. LS Measure  

Figure G.1.1. Direct Effect of the Lottery Draft on Incarceration Outcomes of the Draft Avoiders 

 

Note: The vertical axes in the figures are in the unit of percentage points. 

 

 

 

 

 

 

 



	
	

Figure G.1.2. Estimated Bounds for the Local Average Treatment Effect of Military Service on 
the Incarceration Rates of Volunteers Born in 1948-1952 and 1950 

 

Note: The vertical axes in the figures are in the unit of percentage points. 



	
	

Figure G.1.3. Estimated Bounds for the Local Average Treatment Effect of Military Service on 
the Incarceration Rates of Volunteers Born in 1951 and 1952 

 

Note: The vertical axes in the figures are in the unit of percentage points.  



	
	

 

Figure G.1.4. Estimated Bounds for the Average Treatment Effect of Military Service  
on the Incarceration Rates of Veterans 

 

 

Note: The vertical axes in the figures are in the unit of percentage points.  

 

 

 

 

 

 



	
	

2. “EVER” Measure  
 

Figure G.2.1. Direct Effect of the Lottery Draft on Incarceration Outcomes of the Draft Avoiders 

 

 

Note: The vertical axes in the figures are in the unit of percentage points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



	
	

Figure G.2.2. Estimated Bounds for the Local Average Treatment Effect of Military Service on 
the Incarceration Rates of Volunteers Born in 1948-1952 and 1950 

 

Note: The vertical axes in the figures are in the unit of percentage points.  

 



	
	

Figure G.2.3. Estimated Bounds for the Local Average Treatment Effect of Military Service on 
the Incarceration Rates of Volunteers Born in 1951 and 1952 

 

Note: The vertical axes in the figures are in the unit of percentage points.  

 



	
	

Figure G.2.4. Estimated Bounds for the Average Treatment Effect of Military Service  
on the Incarceration Rates of Veterans 

 

 

Note: The vertical axes in the figures are in the unit of percentage points.  

 




